Abstract

Two cloned cell lines were isolated from cultures of mouse bone-marrow cells. One of the lines, D1, exhibited osteogenic properties and synthesized type-I collagen (alpha 1)2 alpha 2. The second cell line, D2, was not osteogenic and produced a collagen homotrimer (alpha 1)3. Whereas the extracellular matrix of the D1 cell cultures contained striated collagen fibrils, presumably composed of type-I collagen, the homotrimer-producing D2 cells did not demonstrate striated collagen fibrils. Instead, they had thin filaments without detectable striations. Sodium ascorbate stimulated collagen synthesis at the transcriptional level in both the D1 and the D2 cells. The bone-producing characteristics of D1 in vitro included high levels of alkaline phosphatase, increased cyclic adenosine monophosphate on treatment with parathyroid hormone, and expression of osteocalcin mRNA. The D1 cells, unlike the D2 cells, produced a mineralized matrix in vitro. Mineralization in the cultures of the D1 cells occurred in nodules of increased cell density, which also contained the cells with the highest concentrations of collagen mRNA, as shown by in situ hybridization. When the D1 cells were implanted in a diffusion chamber in vivo, a mixture of both osteogenic and adipogenic tissues was formed. This indicates that the D1 cell line is derived from an early marrow stromal precursor that is multipotential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call