Abstract

Objectives Dihydropyrimidine dehydrogenase (DPD) is the initial rate-limiting enzyme in endogenous pyrimidine catabolism and is responsible for the reduction of the pyrimidine analog 5-fluorouracil (5-FU). DPD deficiency is known to cause potentially lethal toxicity in patients receiving 5-FU. We here report a frequency analysis of one of the major splice-site mutations in the DPDY gene, and further two new DPYD gene variants. Design and methods Restriction fragment length polymorphism (RFLP) and DNA sequence analysis were performed on genomic DNA and mRNA. Results In 400 patients that were diagnosed with cancer and were eligible for 5-FU treatment, 14 patients were found to be heterozygous for the splice-site mutation DPYD IVS14+1G>A, which corresponds to a population frequency of 3.5%. Two novel variants in the DPYD gene were identified. The first case was heterozygous for DPYD c.1796T>C (p.M599T). In the second case, we observed heterozygosity for the splice-site mutation DPYD IVS14+17A>G. Conclusions We report two new DPYD gene variants, of which DPYD c.1796T>C is potentially pathogenic, whereas DPYD IVS14+17A>G is suggested as a variant without clinical significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.