Abstract

This review concerns the uptake and degradation of those molecules that are wholly or largely converted to acetyl-coenzyme A (CoA) in the first stage of metabolism in Escherichia coli and Salmonella enterica. These include acetate, acetoacetate, butyrate and longer fatty acids in wild type cells plus ethanol and some longer alcohols in certain mutant strains. Entering metabolism as acetyl-CoA has two important general consequences. First, generation of energy from acetyl-CoA requires operation of both the citric acid cycle and the respiratory chain to oxidize the NADH produced. Hence, acetyl-CoA serves as an energy source only during aerobic growth or during anaerobic respiration with such alternative electron acceptors as nitrate or trimethylamine oxide. In the absence of a suitable oxidant, acetyl-CoA is converted to a mixture of acetic acid and ethanol by the pathways of anaerobic fermentation. Catabolism of acetyl-CoA via the citric acid cycle releases both carbon atoms of the acetyl moiety as carbon dioxide and growth on these substrates as sole carbon source therefore requires the operation of the glyoxylate bypass to generate cell material. The pair of related two-carbon compounds, glycolate and glyoxylate are also discussed. However, despite having two carbons, these are metabolized via malate and glycerate, not via acetyl-CoA. In addition, mutants of E. coli capable of growth on ethylene glycol metabolize it via the glycolate pathway, rather than via acetyl- CoA. Propionate metabolism is also discussed because in many respects its pathway is analogous to that of acetate. The transcriptional regulation of these pathways is discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.