Abstract

AbstractThe study of magnetohydrodynamics (MHD) and thermal radiation over‐stretching and shrinking sheets has significant applications in a wide range of fields, from chemical manufacturing to transport engine cooling systems, electronic chip cooling, plasma, the nuclear‐powered sector, saltwater, etc. The present study aims to numerically and theoretically analyze the movement of thermally magnetized Williamson nanofluid owing to an extended/contracting sheet. The regulating flow equations are converted to self‐similar equations through similarity transformation, and then numerically solved by bvp4c using MATLAB software. A comparison of the present numerical study with the published study is quite impressive. The investigation demonstrates that the self‐similar equations disclose the two branches for the limited shrinking factor range. For the stretching case, only one solution exists. As a result, the most fundamentally feasible solution has been determined by the linear assessment of temporal stability. For the aim of stability analysis, the lowest eigenvalue sign indicates the stability or instability of a solution. Through stability analysis, it is witnessed that the first solution (first branch) is stable. Due to the presence of the Lorentz force effect, it is perceived that the velocity curves decline in the whole channel. The point to be noted here is that the velocity of the lower branch compared to the upper branch is higher. The reduced Skin Friction is increased in the first branch and declines in the second branch for the two different values of magnetic factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.