Abstract

We consider (transient) 3D elastic wave propagation problems in unbounded isotropic homogeneous media, which can be reduced to corresponding 2D ones. For their solution, we propose and compare two boundary integral equation approaches, both based on the coupling of a discrete time convolution quadrature with a classical space collocation discretization. In the first approach, the PDE problem is preliminarily replaced by the equivalent well known (vector) space–time boundary integral equation formulation, while in the second, the same PDE is replaced by a system of two (coupled) wave equations, each one of which is then represented by the associated boundary integral equation. The construction of these two approaches is described and discussed. Some numerical testing are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call