Abstract

Correlations in the nuclear wave-function beyond the mean-field or Hartree-Fock approximation are very important to describe basic properties of nuclear structure. Various approaches to account for such correlations are described and compared to each other. This includes the holeline expansion, the coupled cluster or “exponential S” approach, the self-consistent evaluation of Greens functions, variational approaches using correlated basis functions and recent developments employing quantum Monte-Carlo techniques. Details of these correlations are explored and their sensitivity to the underlying nucleon-nucleon interaction. Special attention is paid to the attempts to investigate these correlations in exclusive nucleon knock-out experiments induced by electron scattering. Another important issue of nuclear structure physics is the role of relativistic effects as contained in phenomenological mean field models. The sensitivity of various nuclear structure observables on these relativistic features are investigated. The report includes the discussion of nuclear matter as well as finite nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.