Abstract

Fe-B alloy is a candidate for a low-cost wear-resistant material but shows very low fracture toughness. To improve the toughness of Fe-B alloys, for this study we attempted to break the continuous network of eutectic Fe2B via K2SO4 addition and heat treatment, so that the Fe2B particles transform to be more spherical. The microstructure, mechanical properties, and two-body and three-body abrasive wear behaviors of the alloys modified with various K2SO4 additions were systemically investigated. The results show that the heat-treated alloys mainly consist of martensite and M2B (M = Cr, Mn, Fe, etc.). With the addition of K2SO4, a new phase α-MnS forms in the alloy, and the circularity value of M2B increases from 0.13 to 0.44. The impact toughness of alloy increases from 6.09 J/cm2 to 14.72 J/cm2 with an increment of 142%, although the Rockwell hardness does not show obvious change. Meanwhile, the two-body wear weight loss of alloys exhibits a “decrease and then increase” trend with increasing K2SO4 addition, while the three-body wear weight loss decreases first and then remains unchanged. The different wear behaviors were investigated and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call