Abstract

Nowadays, the exploration of electromagnetic (EM) wave absorbers with anticorrosion to improve the survivability and environmental adaptability of military targets in the harsh environments is becoming an attractive and unavoidable challenge. Herein, through modulation of the metal composition in the precursors, the core@shell structure Prussian blue analog-derived NiCo@C, CoFe@C, NiFe@C, and NiCoFe@C are obtained with excellent EM wave absorption performance. As for NiCoFe@C, ascribed to the coupling effect of the dual magnetic alloy, a minimum reflection loss (RL) of -47.6dB and an effective absorption bandwidthof 5.83GHz are realized, which cover the whole Ku-band. Meanwhile, four absorbers display the lower corrosion current density (10-4 -10-6 A cm-2 ) and larger polarization resistance (104 -106 Ω) under acid, neutral, and alkaline corrosion conditions over uninterrupted 30 days. Furthermore, due to the spatial barrier effect and the passivation effect of the graphitic carbon shell , the continuous salt spray test has little effect on RL performance and inconspicuously changes the surface morphologies of coating, demonstrating its excellent bifunctional performance. This work lays the foundation for the development of metal-organic frameworks-derived materials with both anticorrosion and EM wave absorption performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call