Abstract

The spin-boson model, describing a two-level system coupled to a bath of harmonic oscillators, is a generic model for quantum dissipation, with manifold applications. It has also been studied as a simple example for an impurity quantum phase transition. Here, we present a detailed study of a U(1)-symmetric two-bath spin-boson model, where two different components of an SU(2) spin $\frac{1}{2}$ are coupled to separate dissipative baths. Nontrivial physics arises from the competition of the two dissipation channels, resulting in a variety of phases and quantum phase transitions. We employ a combination of analytical and numerical techniques to determine the properties of both the stable phases and the quantum critical points. In particular, we find a critical intermediate-coupling phase which is bounded by a continuous quantum phase transition which violates the quantum-to-classical correspondence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call