Abstract

Luminescent defect centers in wide bandgap materials such as MgO are of great interest for science and technology. Magnesium oxide nanocubes obtained by the self-combustion of Mg metal have long exhibited only a broad 2.9 eV cathodoluminescence band owing to oxygen vacancies (F centers). However, in this work, a room-temperature ultraviolet 4.8 eV cathodoluminescence band has been observed coincident with a 2.5 eV band of the same intensity from an unexplored intrinsic defect in MgO terraced nanocubes and nanospheres produced from Mg metal combustion in an H2/O2 flame. Synchrotron radiation excitation spectra reveal that the excitation energy at the onset of both bands is just above the bandgap energy of 7.7 eV, where electrons and holes are generated. We determine that a defect, responsible for both emission bands, creates proximal anion-cation vacancy pairs named P centers that may appear instead of F centers because of changes in the MgO nanoparticle growth conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call