Abstract

Bacteria of the Geobacter clade possess two distinct ATP phosphoribosyltransferases encoded by hisG(L) and hisG(S)+hisZ to catalyze the first reaction of histidine biosynthesis. This very unusual redundancy was investigated by mutational analysis. The hisG(L), hisG(S), and hisZ genes of Geobacter sulfurreducens were deleted, effects on growth and histidine biosynthesis gene expression were evaluated, and deficiencies were complemented with plasmid-borne genes. Both hisG(L) and hisG(S)+hisZ encode functional ATP phosphoribosyltransferases. However, deletion of hisG(L) resulted in no growth defect, whereas deletion of hisG(S) delayed growth when histidine was not provided. Both deletions increased hisZ transcript abundance, and both ΔhisG(S) and ΔhisZ mutations increased hisG(L) transcript abundance. Growth with HisG(L) alone (due to deletion of either hisG(S) or hisZ) was better under nitrogen fixation conditions than when ammonium was provided. Deletion of hisZ caused growth defects under all conditions tested, with or without exogenous sources of histidine, with different patterns of histidine biosynthesis gene expression under each condition. Taken together, the data indicate that G. sulfurreducens depends primarily on the HisG(S)Z isozyme as an ATP phosphoribosyltransferase in histidine biosynthesis, and for other functions when histidine is available; however, HisG(L) also functions as ATP phosphoribosyltransferase, particularly during nitrogen fixation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.