Abstract

The center-of-mass motion of two two-level atoms coupled to a single damped mode of an electromagnetic resonator is investigated. For the case of one atom being initially excited and the cavity mode in the vacuum state, it is shown that the atomic time evolution is dominated by the appearance of dark states. These states, in which the initial excitation is stored in the internal atomic degrees of freedom and the atoms become quantum mechanically entangled, are almost immune against photon loss from the cavity. Various properties of the dark states within and beyond the Raman-Nath approximation of atom optics are worked out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.