Abstract

Because of their innate ability to store and then release energy, long-persistent luminescence (LPL) materials have garnered strong research interest in a wide range of multidisciplinary fields, such as biomedical sciences, theranostics, and photonic devices. Although many inorganic LPL systems with afterglow durations of up to hours and days have been reported, organic systems have had difficulties reaching similar timescales. In this work, a design principle based on the successes of inorganic systems to produce an organic LPL (OLPL) system through the use of a strong organic electron trap is proposed. The resulting system generates detectable afterglow for up to 7 h, significantly longer than any other reported OLPL system. The design strategy demonstrates an easy methodology to develop organic long-persistent phosphors, opening the door to new OLPL materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.