Abstract
This paper addresses the problem of routing and admission control of real-time traffic in a queueing system where customers must begin service within given deadlines (or complete service within given deadlines), otherwise they are considered lost. Performance in such systems is measured by the probability a customer is lost. For a system ofK parallel servers with a probabilistic routing and admission control scheme, the problem of the optimal routing and admission control is considered and two approaches are presented. Assuming the availability of a closed-form expression for the probability of loss at each server, the problem is solved under general conditions and properties of the optimal flow allocation are given. However, such closed-form expressions are often unavailable. This motivates a second approach, which involves a gradient-based stochastic optimization algorithm with on-line gradient estimation. The gradient estimation problem for loss probabilities is solved through a recently-developed smoothed perturbation analysis (SPA) technique. The effectiveness of on-line stochastic optimization using this type of gradient estimator is demonstrated by combining the SPA algorithm with a sampling-controlled stochastic optimization algorithm for the aforementioned routing and admission control problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.