Abstract
Progress on the development of a general framework for the simulation of turbulent, compressible, multi-phase, multi-material flows is described. It is based on interface-capturing and a compositional approach in which each component represents a different phase/fluid. It uses fully-unstructured meshes so that the latest mesh adaptivity methods can be exploited. A control volume-finite element mixed formulation is used to discretise the equations spatially. This employs finite-element pairs in which the velocity has a linear discontinuous variation and the pressure has a quadratic continuous variation. Interface-capturing is performed using a novel high-order accurate compressive advection method. Two-level time stepping is used for efficient time-integration, and a Petrov–Galerkin approach is used as an implicit large-eddy simulation model. Predictions of the numerical method are compared against experimental results for a five-material collapsing water column test case. Results from numerical simulations of two- and three-phase horizontal slug flows using this method are also reported and directions for future work are also outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.