Abstract

We propose an automatic numerical method requiring minimal user intervention to simulate delamination in composite structures. We develop isogeometric cohesive elements for two- and three-dimensional delamination by exploiting the knot insertion algorithm directly from CAD data to generate cohesive elements along delamination. A complete computational framework is presented including pre-processing, processing and post-processing. They are explained in detail and implemented in MIGFEM – an open source Matlab Isogemetric Analysis code developed by the authors. The composite laminates are modeled using both NURBS solid and rotation-free shell elements. Several two and three dimensional examples ranging from standard delamination tests (the mixed mode bending test) to the L-shaped specimen with a fillet, three dimensional (3D) double cantilever beam and a 3D singly curved thick-walled laminate are provided. The method proposed provides a bi-directional system in which one can go forward from CAD to analysis and backwards from analysis to CAD. This is believed to facilitate the design of composite structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.