Abstract
The application of pressure, internal or external, transforms molecular solids into extended solids with more itinerant electrons to soften repulsive interatomic interactions in a tight space. Examples include insulator-to-metal transitions in O(2), Xe and I(2), as well as molecular-to-non-molecular transitions in CO(2) and N(2). Here, we present new discoveries of novel two- and three-dimensional extended non-molecular phases of solid XeF(2) and their metallization. At approximately 50 GPa, the transparent linear insulating XeF(2) transforms into a reddish two-dimensional graphite-like hexagonal layered structure of semiconducting XeF(4). Above 70 GPa, it further transforms into a black three-dimensional fluorite-like structure of the first observed metallic XeF(8) polyhedron. These simultaneously occurring molecular-to-non-molecular and insulator-to-metal transitions of XeF(2) arise from the pressure-induced delocalization of non-bonded lone-pair electrons to sp(3)d(2) hybridization in two-dimensional XeF(4) and to p(3)d(5) in three-dimensional XeF(8) through the chemical bonding of all eight valence electrons in Xe and, thereby, fulfilling the octet rule at high pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.