Abstract

Geometrically complex heterogeneities at a decommissioned sour gas plant could not be adequately characterized with drilling and 2D electrical resistivity surveys alone. In addition, 2D electrical resistivity imaging profiles produced misleading images as a result of out‐of‐plane resistivity anomalies and violation of the 2D assumption. Accurate amplitude and positioning of electrical conductivity anomalies associated with the subsurface geochemical distribution were required to effectively analyze remediation alternatives. Forward and inverse modeling and field examples demonstrated that 3D resistivity images were needed to properly reconstruct the amplitude and geometry of the complex resistivity anomalies. Problematic 3D artifacts in 2D images led to poor inversion fits and spurious conductivity values in the images at depths close to the horizontal offset of the off‐line anomaly. Three‐dimensional surveys were conducted with orthogonal sets of Wenner and dipole–dipole 2D resistivity survey lines. The 3D inversions were used to locate source zones and zones of elevated ammonium. Thus, conducting 3D electrical resistivity imaging (ERI) surveys early in the site characterization process will improve cost effectiveness at many remediation sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.