Abstract

The demographic change in western countries towards an older population is being shadowed by an increased appearance of chronic diseases influencing soft tissue healing in a negative manner. Although various promising therapeutic approaches are available for treating chronic wounds, no in vitro model exists that successfully allows the analysis of interacting cells and of the effect of therapeutic drugs within a wound. Granulation tissue assures wound stability, neo-angiogenesis and revascularization finally leading to functional soft tissue repair. As one of the first steps in developing a model for human granulation tissue, we examined microvascular endothelial cells and pericytes in conventional 2D and in 3D spheroid co-cultures. We determined which parameters could be used in a standardized manner and whether the cultures were responsive to hypoxia and to erythropoietin supplementation. The read-out parameters of cell migration, cell density, rate of apoptotic cells, spatial cell distribution in the spheroid and spheroid volume were shown to be excellent analytic measures. In addition, quantification of hypoxia-related genes identified a total of 13 genes that were up-regulated in spheroids after hypoxia. As these parameters delivered reliable results in the present approach and as the general morphological distribution of pericytes and endothelial cells within the spheroid occurred in a typical manner, we believe that this basic in vitro model will serve for the future study of diverse aspects of soft tissue healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.