Abstract
— Seismic responses of weathered and non-weathered ridge models were simulated to study the ridge effects on the ground motion characteristics. The range of ridge slope from 19.98° to 45° was considered to produce a possible set of generalized results. 2.5-D modeling based on parsimonious staggered grid approximation of elastodynamic wave equations was adopted in simulations. Computed results reveal an increase of amplitude of incoming waves with both elevation and the slope of the ridge. Further, the characteristics of surface waves are highly ridge slope dependent. The analysis of responses of weathered and non-weathered ridge models reveals that ridge has caused a strong generation of surface waves near its top. The surface waves are not dominating on the top of the ridge but at some lower elevation. The increase of weathering of ridge further intensified the ridge effect. Analysis in frequency domain, based on spectral ratio method, does not indicate a ny pattern in the spectral amplification factor and is very much sensitive to slope, source focal mechanism and location. However, on an average there is a continuous decrease of amplification with slope in the vertical component and increase in the transverse component, and it is increasing in the radial component up to slope =38.0° and thereafter decreasing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.