Abstract

Herpes simplex virus type-1 (HSV-1) initially infects mucoepithelial tissues of the eye and the orofacial region. Subsequently, the virus is retrogradely transported through the axons of the trigeminal sensory neurons. HSV-1 establishes a life-long latent infection in these neurons, during which the transcription of the viral genome is silent, except for the sequences encoding the latency-associated transcript (LAT). To determine if HSV-1 latency might affect calcitonin gene-related peptide (CGRP) expression in trigeminal sensory neurons, we transfected primary neuronal cultures of trigeminal ganglia from rat embryos with plasmids expressing LAT. In the presence of Bone Morphogenetic Protein-7 (BMP7), CGRP was expressed in 49% of sensory neurons. However, this percentage was reduced to 19% in neurons transfected with LAT expressing plasmids. We also found that transfection of the IE63 gene of varicella-zoster virus (VZV) reduced the percentage of trigeminal neurons containing CGRP. However, the observed effect of IE63 in contrast to that of LAT was completely reversed by treatment of cultures with MgCl2, which indicates that the effect of IE63 was due to increased release of CGRP from trigeminal neurons. We provide here the first evidence that HSV-1 LAT decreases the level of CGRP in trigeminal neurons. These effects may be important for reducing the neuroinflammatory response, thus protecting host neuronal cells during HSV-1 latency in trigeminal neurons. In contrast, increased release of CGRP in the presence of IE63 protein may contribute to the neuralgias associated with VZV infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call