Abstract

Let $k\ge 1$ be an integer, and let $P= (f_1(x), \ldots, f_k(x) )$ be $k$ admissible linear polynomials over the integers, or \textit{the pattern}. We present two algorithms that find all integers $x$ where $\max{ \{f_i(x) \} } \le n$ and all the $f_i(x)$ are prime. Our first algorithm takes at most $O_P(n/(\log\log n)^k)$ arithmetic operations using $O(k\sqrt{n})$ space. Our second algorithm takes slightly more time, $O_P(n/(\log \log n)^{k-1})$ arithmetic operations, but uses only $n^{1/c}$ space for a constant $c>2$. We prove correctness unconditionally, but the running time relies on two unproven but reasonable conjectures. We are unaware of any previous complexity results for this problem beyond the use of a prime sieve. We also implemented several parallel versions of our second algorithm to show it is viable in practice. In particular, we found some new Cunningham chains of length 15, and we found all quadruplet primes up to $10^{17}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.