Abstract
In this paper, we develop and compare two methods for solving the problem of determining the global maximum of a function over a feasible set. The two methods begin with a random sample of points over the feasible set. Both methods then seek to combine these points into “regions of attraction” which represent subsets of the points which will yield the same local maximums when an optimization procedure is applied to points in the subset. The first method for constructing regions of attraction is based on approximating the function by a mixture of normal distributions over the feasible region and the second involves attempts to apply cluster analysis to form regions of attraction. The two methods are then compared on a set of well-known test problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.