Abstract

This paper presents two recently developed algorithms for efficient model order reduction. Both algorithms enable the fast solution of continuous-time algebraic Riccati equations (CAREs) that constitute the bottleneck in the passivity-preserving balanced stochastic truncation (BST). The first algorithm is a Smith-method-based Newton algorithm, called Newton/Smith CARE, that exploits low-rank matrices commonly found in physical system modeling. The second algorithm is a project-and-balance scheme that utilizes dominant eigenspace projection, followed by a simultaneous solution of a pair of dual CAREs through completely separating the stable and unstable invariant subspaces of a Hamiltonian matrix. The algorithms can be applied individually or together. Numerical examples show the proposed algorithms offer significant computational savings and better accuracy in reduced-order models over those from conventional schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.