Abstract

This paper presents two algebraic criteria for the input-to-state stability of recurrent neural networks with time-varying delays. The criteria which also ensure global exponential stability when the input u(t) is equal to 0 and is easy to be verified only with the connection weights of the recurrent neural networks. Two numerical examples are given to demonstrate the effectiveness of the proposed criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.