Abstract
We schedule the jobs from two agents on a single parallel-batching machine with equal processing time and non-identical job sizes. The objective is to minimize the makespan of the first agent subject to an upper bound on the makespan of the other agent. We show that there is no polynomial-time approximation algorithm for solving this problem with a finite worst-case ratio, unless P=NP. Then, we propose an effective algorithm LB to obtain a lower bound of the optimal solution, and two algorithms, namely, reserved-space heuristic (RSH) and dynamic-mix heuristic (DMH), to solve the two-agent scheduling problem. Finally, we evaluate the performance of the proposed algorithms with a set of computational experiments. The results show that Algorithm LB works well and tends to perform better with the increase of the number of jobs. Furthermore, our results demonstrate that RSH and DMH work well on different cases. Specifically, when the optimal makespan on the first agent exceeds the upper bound of the makespan of the other agent, RSH outperforms or equals DMH, otherwise DMH is not less favorable than RSH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.