Abstract

This paper proposes two simple schemes for adaptive control of robot manipulator, to achieve trajectory tracking. The state feedback controller consists of feedforward from the reference position trajectory, feedback from the actual trajectory, and an auxiliary input. The feedforward/feedback controller is different from the state feedback controller in that it consists of feedforward from the reference position, velocity, and acceleration trajectory based on “inverse” dynamics of robot manipulator. The feedforward and feedback gains and the auxiliary input are adapted using adaptive control theory based on Lyapunov's direct method, and using only the local information of the corresponding joint. The proposed control schemes are computationally fast and do not require a priori knowledge of the parameter of the manipulator or the payload. Simulation results are presented in support of the proposed schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call