Abstract

Bamboo is one of the most important non-timber forest species in the world, but their molecular breeding lags far behind in contrast to other economic plants. Regarding the difficulties of hybridization and gene modification, the transposon-based insertional mutagenesis might be an alternative, feasible way for molecular breeding of bamboo. A systematic search for potential active transposons identified two full-length mariner-like elements (MLEs) (Ppmar1 and Ppmar2) from moso bamboo in the previous study. Both MLEs contain perfect terminal inverted repeats (TIRs) and a full-length intact transposase. Two transposases contain intact DNA-binding motifs and a DD39D catalytic domain which indicates that Ppmar1 and Ppmar2 are likely active. Here, we deployed a heterologous transposition system of Arabidopsis thaliana to study the transposition activity of Ppmar1 and Ppmar2. The results show that both MLEs could transpose in A. thaliana. Excisions of Ppmar1 and Ppmar2 are usually unperfect as they leave 1–4 bp in excision sites. The reinsertions of both Ppmar1 and Ppmar2 occur at TA dinucleotides and prefer to insert into the TA-rich regions. The insertion sites are dispersed and non-linked. Two active bamboo transposons identified here not only could be applied to construction of the bamboo mutant libraries but also would provide another choice for other plant transposon-based gene tagging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.