Abstract

Seed development is critical for plant reproduction and crop yield, with panicle seed-setting rate, grain-filling, and grain weight being key seed characteristics for yield improvement. However, few genes are known to regulate grain filling. Here, we identify two adenosine triphosphate (ATP)-binding cassette (ABC)I-type transporter genes, OsABCI15 and OsABCI16, involved in rice grain-filling. Both genes are highly expressed in developing seeds, and their proteins are localized to the plasma membrane and cytosol. Interestingly, knockout of OsABCI15 and OsABCI16 results in a significant reduction in seed-setting rate, caused predominantly by the severe empty pericarp phenotype, which differs from the previously reported low seed-setting phenotype resulting from failed pollination. Further analysis indicates that OsABCI15 and OsABCI16 participate in ion homeostasis and likely export ions between filial tissues and maternal tissues during grain filling. Importantly, overexpression of OsABCI15 and OsABCI16 enhances the seed-setting rate and grain yield in transgenic plants and decreases ion accumulation in brown rice. Moreover, the OsABCI15/16 orthologues in maize exhibit a similar role in kernel development, as demonstrated by their disruption in transgenic maize. Therefore, our findings reveal the important roles of two ABC transporters in cereal grain filling, highlighting their value in crop yield improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call