Abstract

This paper introduces a novel transductive neuro-fuzzy inference model with weighted data normalization (TWNFI). In transductive systems a local model is developed for every new input vector, based on a certain number of data that are selected from the training data set and the closest to this vector. The weighted data normalization method (WDN) optimizes the data normalization ranges of the input variables for the model. A steepest descent algorithm is used for training the TWNFI models. The TWNFI is compared with some other widely used connectionist systems on two case study problems: Mackey-Glass time series prediction and a real medical decision support problem of estimating the level of renal function of a patient. The TWNFI method not only results in a "personalized" model with a better accuracy of prediction for a single new sample, but also depicts the most significant input variables (features) for the model that may be used for a personalized medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.