Abstract
This paper contributes a new large-scale dataset for weakly supervised cross-media retrieval, named Twitter100k. Current datasets, such as Wikipedia, NUS Wide, and Flickr30k, have two major limitations. First, these datasets are lacking in content diversity, i.e., only some predefined classes are covered. Second, texts in these datasets are written in well-organized language, leading to inconsistency with realistic applications. To overcome these drawbacks, the proposed Twitter100k dataset is characterized by two aspects: it has 100 000 image-text pairs randomly crawled from Twitter, and thus, has no constraint in the image categories; and text in Twitter100k is written in informal language by the users. Since strongly supervised methods leverage the class labels that may be missing in practice, this paper focuses on weakly supervised learning for cross-media retrieval, in which only text-image pairs are exploited during training. We extensively benchmark the performance of four subspace learning methods and three variants of the correspondence AutoEncoder, along with various text features on Wikipedia, Flickr30k, and Twitter100k. As a minor contribution, we also design a deep neural network to learn cross-modal embeddings for Twitter100k. Inspired by the characteristic of Twitter100k, we propose a method to integrate optical character recognition into cross-media retrieval. The experiment results show that the proposed method improves the baseline performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.