Abstract
With the empirical evidence that Twitter influences the financial market, there is a need for a bottom-up approach focusing on individual Twitter users and their message propagation among a selected Twitter community with regard to the financial market. This paper presents an agent-based simulation framework to model the Twitter network growth and message propagation mechanism in the Twitter financial community. Using the data collected through the Twitter API, the model generates a dynamic community network with message propagation rates by different agent types. The model successfully validates against the empirical characteristics of the Twitter financial community in terms of network demographics and aggregated message propagation pattern. Simulation of the 2013 Associated Press hoax incident demonstrates that removing critical nodes of the network (users with top centrality) dampens the message propagation process linearly and critical node of the highest betweenness centrality has the optimal effect in reducing the spread of the malicious message to lesser ratio of the community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.