Abstract
The coronavirus disease 2019 (COVID-19) pandemic has severely affected Thailand's economy, which relies heavily on tourism. In this study, we labeled the sentiment and intention classes of English-language tweets related to tourism in Bangkok, Chiang Mai, and Phuket. Then, the accuracy of three machine learning algorithms (decision tree, random forest, and support vector machine) in predicting the sentiments and intentions of the tweets was investigated. The support vector machine algorithm provided the best results for sentiment analysis, with a maximum accuracy of 77.4%. In the intention analysis, the random forest algorithm achieved an accuracy of 95.4%. In a subsequent preliminary qualitative content analysis, the top 10 words found in each sentiment and intention class were gathered to provide insights and suggestions to help increase tourism in Thailand. The results of this study suggest that to help restore tourism in Thailand, tourist destinations, natural attractions, restaurants, and nightlife should be promoted. In addition, the two main concerns of tourists to Thailand should be addressed: COVID-19 and current political tensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.