Abstract
In the existing literature about innovation processes, the proposed models often satisfy the Heaps’ law, regarding the rate at which novelties appear, and the Zipf’s law, that states a power law behavior for the frequency distribution of the elements. However, there are empirical cases far from showing a pure power law behavior and such a deviation is mostly present for elements with high frequencies. We explain this phenomenon by means of a suitable “damping” effect in the probability of a repetition of an old element. We introduce an extremely general model, whose key element is the update function, that can be suitably chosen in order to reproduce the behaviour exhibited by the empirical data. In particular, we explicit the update function for some Twitter data sets and show great performances with respect to Heaps’ law and, above all, with respect to the fitting of the frequency-rank plots for low and high frequencies. Moreover, we also give other examples of update functions, that are able to reproduce the behaviors empirically observed in other contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.