Abstract
The twist construction is a geometric T-duality that produces new manifolds from old, works well with for example hypercomplex structures and is easily inverted. It tends to destroy properties such as the hyperKähler condition. On the other hand modifications preserve the hyperKähler property, but do not have an obvious inversion. In this paper we show how elementary deformations provide a link between the two constructions, and use the twist construction to build hyperKähler and strong HKT structures. In the process, we provide a full classification of complete hyperKähler four-manifolds with tri-Hamiltonian symmetry and study a number singular phenomena in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.