Abstract

We give an explicit description of rational curves in the product of three copies of complex projective lines, which are transformed into twistor lines in M. Nagata’s example of non-projective complete algebraic variety, viewed as the twistor space of Eguchi-Hanson metric. In particular, we show that there exist two families of such curves and both of them are parameterized by mutually diffeomorphic, connected real 4-dimensional manifolds. We also give a relationship between these two families through a birational transformation naturally associated to the Nagata’s example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.