Abstract

Based on Nijenhuis-Richardson bracket and bidegree on the cohomology complex for a Lie conformal algebra, we develop a twisting theory of Lie conformal algebras. By using derived bracket constructions, we construct L∞-algebras from (quasi-)twilled Lie conformal algebras. And we show that the result of the twisting by a C[∂]-module homomorphism on a (quasi-)twilled Lie conformal algebra is also a (quasi-)twilled Lie conformal algebra if and only if the C[∂]-module homomorphism is a Maurer-Cartan element of the L∞-algebra. In particular, we show that relative Rota-Baxter type operators on Lie conformal algebras are Maurer-Cartan elements. Besides, we propose a new algebraic structure, called NS-Lie conformal algebras, that is closely related to twisted relative Rota-Baxter operators and Nijenhuis operators on Lie conformal algebras. As an application of twisting theory, we give the cohomology of twisted relative Rota-Baxter operators and study their deformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.