Abstract

In contrast to the classical and semiclassical settings, the Coxeter element (12... n) which cycles the columns of an m x n matrix does not determine an automorphism of the quantum grassmannian. Here, we show that this cycling can be obtained by means of a cocycle twist. A consequence is that the torus invariant prime ideals of the quantum grassmannian are permuted by the action of the Coxeter element (12 ... n). We view this as a quantum analogue of the recent result of Knutson, Lam and Speyer, where the Lusztig strata of the classical grassmannian are permuted by (12... n).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.