Abstract
In contrast to the classical and semiclassical settings, the Coxeter element (12... n) which cycles the columns of an m x n matrix does not determine an automorphism of the quantum grassmannian. Here, we show that this cycling can be obtained by means of a cocycle twist. A consequence is that the torus invariant prime ideals of the quantum grassmannian are permuted by the action of the Coxeter element (12 ... n). We view this as a quantum analogue of the recent result of Knutson, Lam and Speyer, where the Lusztig strata of the classical grassmannian are permuted by (12... n).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.