Abstract

We develop the formalism of supersymmetric localization in supergravity using the deformed BRST algebra defined in the presence of a supersymmetric background as recently formulated in [1]. The gravitational functional integral localizes onto the cohomology of a global supercharge Qeq, obeying Qeq2 = H, where H is a global symmetry of the background. Our construction naturally produces a twisted version of supergravity whenever supersymmetry can be realized off-shell. We present the details of the twisted graviton multiplet and ghost fields for the superconformal formulation of four-dimensional mathcal{N} = 2 supergravity. As an application of our formalism, we systematize the computation of the exact quantum entropy of supersymmetric black holes. In particular, we compute the one-loop determinant of the Qeq mathcal{V} deformation operator for the off-shell fluctuations of the Weyl multiplet around the AdS2 × S2 saddle. This result, which is consistent with the corresponding large-charge on-shell analysis, is needed to complete the first-principles computation of the quantum entropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.