Abstract
Investigated is a variant of the Wess-Zumino-Witten model called a twisted WZW model, which is associated to a certain Lie group bundle on a family of elliptic curves. The Lie group bundle is a non-trivial bundle with flat connection and related to the classical elliptic r-matrix. (The usual (non-twisted) WZW model is associated to a trivial group bundle with trivial connection on a family of compact Riemann surfaces and a family of its principal bundles.) The twisted WZW model on a fixed elliptic curve at the critical level describes the XYZ Gaudin model. The elliptic Knizhnik-Zamolodchikov equations associated to the classical elliptic r-matrix appear as flat connections on the sheaves of conformal blocks in the twisted WZW model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.