Abstract

Despite the rapid development of thermally activated delayed fluorescent (TADF) materials, developing organic light-emitting diodes (OLEDs) with small efficiency roll-off remains a formidable challenge. Herein, we have designed a TADF molecule (mClSFO) based on the spiro fluorene skeleton. The highly twisted structure and multiple charge-transfer channels effectively suppress aggregation-caused quenching (ACQ) and endow mClSFO with excellent exciton dynamic properties to reduce efficiency roll-off. Fast radiative rate (kr) and rapid reverse intersystem crossing (RISC) rate (kRISC) of 1.6 × 107 s-1 and 1.07 × 106 s-1, respectively, are obtained in mClSFO. As a result, OLEDs based on mClSFO obtain impressive maximum external quantum efficiency (EQEmax) exceeding 20% across a wide doping concentration range of 10-60 wt%. 30 wt% doped OLED exhibits an EQEmax of 23.1% with a small efficiency roll-off, maintaining an EQE of 18.6% at 1000 cd m-2. The small efficiency roll-off and low concentration dependence observed in the TADF emitter underscore its significant potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.