Abstract
This letter discusses the surface-reconstruction-induced self-twisting behavior of Si〈100〉 nanobelts and nanowires (NWs) with rectangular cross section. Giving a thorough physical interpretation, we explain the reason behind this phenomenon and present a continuum-based model. It is revealed that these structures can self-assemble into both right- and left-handed helicoids depending on their crystal arrangements. More specifically, for NWs with the same number of layers in each of their cross sections directions, two distinct values of torsion angle are possible for each of right- and left-handed twisted morphologies. In conclusion, four modes of torsion can be observed in Si〈100〉 NWs. Furthermore, some atomistic simulations are conducted to substantiate analytical results by utilizing Tersoff’s potential. These results confirm the precision of the analytical discussions and are in good agreement with the continuum model predictions. Finally, the results of Tersoff’s potential are validated by a density functional based tight-binding model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.