Abstract

A new class of twisted Schell-model array correlated sources are introduced based on Mercer's expansion. It turns out that such sources can be expressed as superposition of fully coherent Laguerre-Gaussian modes, and the twistable condition is established. Furthermore, on the basis of a stretched coordinate system and a quadratic approximation, analytical expressions for the mutual coherence function of an anisotropic non-Kolmogorov turbulence and the cross-spectral density of a twisted Gaussian Schell-model array beam are rigorously derived. Due to the presence of the twist phase, the beam spot and the degree of coherence rotate as they propagate, but their rotation centers are different. It is shown that the anisotropy of turbulence causes an anisotropic beam spreading in the horizontal and vertical directions. However, impressing a twist phase on source beams can significantly inhibit this effect. For an anticipated atmospheric channel condition, a comprehensive selection of initial optical signal parameters, receiver aperture size and receiver capability, etc., is necessary. Our work is helpful for exploring new forms of twistable sources, and promotes guidance on optimization of partial coherent beam applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call