Abstract
We use equivariant methods to define and study the orbifold K-theory of an orbifold X. Adapting techniques from equivariant K-theory, we construct a Chern character and exhibit a multiplicative decomposition for K * orb (X)⊗ℚ, in particular showing that it is additively isomorphic to the orbifold cohomology of X. A number of examples are provided. We then use the theory of projective representations to define the notion of twisted orbifold K–theory in the presence of discrete torsion. An explicit expression for this is obtained in the case of a global quotient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.