Abstract

In light of the biomedical interest for self-assembling amphiphiles bearing the tripeptide Arg-Gly-Gly (RGD), a cholic acid derivative was synthesized by introducing an aromatic moiety on the steroidal skeleton and the RGD sequence on the carboxylic function of its chain 17–24, thus forming a peptide amphiphile with the unconventional rigid amphiphilic structure of bile salts. In aqueous solution, the compound self-assembled into long twisted ribbons characterized by a very low degree of polydispersity in terms of width (≈25nm), thickness (≈4.5nm) and pitch (≈145nm). It was proposed that in the ribbon the molecules are arranged in a bilayer structure with the aromatic moieties in the interior, strongly involved in the intermolecular interaction, whereas the RGD residues are located at the bilayer-water interface. The nanostructure is significantly different from those generally provided by RGD-containing amphiphiles with the conventional peptide-tail structure, for which fibers with a circular cross-section were observed, and successfully tested as scaffolds for tissue regeneration. From previous work on the use of this kind of nanostructures, it is known that features like morphology, rigidity, epitope spacing and periodicity are important factors that dramatically affect cell adhesion and signaling. Within this context, the reported results demonstrate that bile salt-based peptide surfactants are promising building blocks in the preparation of non-trivial RGD-decorated nanoaggregates with well-defined morphologies and epitope distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.