Abstract

Twisted bilayers of nodal superconductors were recently proposed as a promising platform to host superconducting phases that spontaneously break time-reversal symmetry. Here we extend this analysis to twisted multilayers, focusing on two high-symmetry stackings with alternating ($\pm \theta$) and constant ($\theta$) twist angles. In analogy to alternating-twist multilayer graphene, the former can be mapped to twisted bilayers with renormalized interlayer couplings, along with a remnant gapless monolayer when the number of layers $L$ is odd. In contrast, the latter exhibits physics beyond twisted bilayers, including the occurrence of `magic angles' characterized by cubic band crossings when $L \mod 4 = 3$. Owing to their power-law divergent density of states, such multilayers are highly susceptible to secondary instabilities. Within a BCS mean-field theory, defined in the continuum and on a lattice, we find that both stackings host chiral topological superconductivity in extended regions of their phase diagrams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.