Abstract
We introduce a class of projected entangled pair states (PEPS) which is based on a group symmetry twisted by a 3-cocycle of the group. This twisted symmetry is expressed as a matrix product operator (MPO) with bond dimension greater than 1 and acts on the virtual boundary of a PEPS tensor. We show that it gives rise to a new standard form for PEPS from which we construct a family of local Hamiltonians which are gapped, frustration-free and include fixed points of the renormalization group flow. Based on this insight, we advance the classification of 2D gapped quantum spin systems by showing how this new standard form for PEPS determines the emergent topological order of these local Hamiltonians. Specifically, we identify their universality class as Dijkgraaf–Witten topological quantum field theory (TQFT).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.