Abstract
We calculate the cohomology spaces of the Hilbert schemes of points on surfaces with values in local systems. For that purpose, we generalise I. Grojnoswki's and H. Nakajima's description of the ordinary cohomology in terms of a Fock space representation to the twisted case. We make further non-trivial generalisations of M. Lehn's work on the action of the Virasoro algebra to the twisted and the non-projective case. Building on work by M. Lehn and Ch. Sorger, we then give an explicit description of the cup-product in the twisted case whenever the surface has a numerically trivial canonical divisor. We formulate our results in a way that they apply to the projective and non-projective case in equal measure. As an application of our methods, we give explicit models for the cohomology rings of the generalised Kummer varieties and of a series of certain even dimensional Calabi–Yau manifolds.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.