Abstract

Ferrocene symmetry is commonly described as either eclipsed (D5h) or staggered (D5d), but this symmetry does not hold when substitution is involved. Here we examine and quantify the effect of substitution on the geometry of the core structure of ferrocene, and provide means to distinguish between its various distortion paths. Continuous symmetry analysis of the core structure of 7418 substituted ferrocenes extracted from the Cambridge Crystallographic Database was used to explore its twisting and bending distortion paths, as well as asymmetric bond stretch that deforms the symmetry of its cyclopentadienyl rings. Gas-phase density functional theory calculations provided a theoretical background to describe these distortion paths and define symmetry profiles for conformer interconversion processes and the interplay between them. Our results show that the distortion of ferrocene can often be substantial. Furthermore, its geometry is highly flexible, and almost always chiral to some degree. Handedness in term...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.