Abstract

Let [Formula: see text] be a non-abelian semi-direct product of a cyclic group [Formula: see text] and an elementary abelian [Formula: see text]-group [Formula: see text] of order [Formula: see text], [Formula: see text] being a prime and [Formula: see text]. Suppose that the knot group [Formula: see text] of a knot [Formula: see text] in the [Formula: see text]-sphere is represented on [Formula: see text]. Then we conjectured (and later proved) that the twisted Alexander polynomial [Formula: see text] associated to [Formula: see text] is of the form: [Formula: see text], where [Formula: see text] is the Alexander polynomial of [Formula: see text] and [Formula: see text] is an integer polynomial in [Formula: see text]. In this paper, we present a proof of the following. For a [Formula: see text]-bridge knot [Formula: see text] in [Formula: see text], if [Formula: see text] and [Formula: see text], then [Formula: see text] is written as [Formula: see text], where [Formula: see text] is the set of [Formula: see text]-bridge knots whose knot groups map on that of [Formula: see text] with [Formula: see text] odd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call